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Abstract

Hamiltonian Monte Carlo (HMC) is a powerful al-
gorithm to sample latent variables from Bayesian
models. The advent of probabilistic programming
languages (PPLs) frees users from writing infer-
ence algorithms and lets users focus on model-
ing. However, many models are difficult for HMC
to solve directly, which often require tricks like
model reparameterization. We are motivated by
the fact that many of those models could be simpli-
fied by marginalization. We propose to use auto-
matic marginalization as part of the sampling pro-
cess using HMC in a graphical model extracted
from a PPL, which substantially improves sam-
pling from real-world hierarchical models.

1. Introduction

Probabilistic programming languages (PPLs) promise to
automate Bayesian reasoning. A user specifies a proba-
bilistic model and provides data, and the PPL automatically
performs inference to approximate the posterior distribu-
tion. The user derives scientific insights without highly spe-
cialized expertise in probabilistic inference (van de Meent
et al., 2018). Through tools like BUGS (Lunn et al., 2009),
JAGS (Hornik et al., 2003), and Stan (Carpenter et al., 2017),
this paradigm has had tremendous impact in the applied sci-
ences, and there has been considerable research in computer
science to advance the foundations of PPLs (Goodman et al.,
2008; Wood et al., 2014; Goodman & Stuhlmiiller, 2014,
Cusumano-Towner et al., 2019; Minka et al., 2018).

PPLs vary in many dimensions, including the distributions
they can represent and their primary inference approach.
We focus on a setting that has had large impact in practice,
where a model is compiled to a differentiable log-density
function for inference by a variant of Hamiltonian Monte
Carlo (HMC) (Duane et al., 1987; Neal, 1996). Our meth-
ods would likely benefit other Markov chain Monte Carlo
(MCMC) inference approaches as well. We focus in par-
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ticular on (1) generative PPLs, where a model is expressed
by writing a sampling procedure, and (2) on programs that
correspond to a (directed) graphical model, which means
that random variables are generated according to a fixed
sequence of conditional distributions in each program exe-
cution. This includes most applied statistical models written
in generative PPLs such as Pyro (Bingham et al., 2018),
NumPyro (Phan et al., 2019), PyMC (Patil et al., 2010), Ed-
ward (Tran et al., 2017) and TensorFlow Probability (Piponi
et al., 2020). It does not directly include Stan programs,
which do not always specify a sampling procedure, though
most can be converted to do so (Baudart et al., 2021).

Despite their promise, the barrier between users and infer-
ence in PPLs is often blurred. There may be different ways
to write a model, with inference performance depending
critically on the specific choice, such that users again need
specialized knowledge. One issue is the main focus of this
paper: it is often possible to reformulate a generative model
so that some latent variables are generated after all observed
variables, which allows them to be dropped during MCMC
and then reconstructed afterward. An example is shown in
Figure 1: the well known eight schools model is reformu-
lated so latent variables x;.g are generated last; they can
then be dropped during MCMC and reconstructed given
samples of p and 7 by sampling from p(z1.5 | 1, 7, y1.8)-
We refer to this as marginalization, because the variables
are marginalized while running MCMC, but it is important
that they are later reconstructed. By reducing the number of
variables for MCMC, marginalization can lead to substan-
tial performance gains. We also find that marginalization
applies in several hierarchical model settings that are known
to be difficult for HMC and is an even better remedy than
an existing approach of reparameterization (Betancourt &
Girolami, 2015; Gorinova et al., 2020). However, it places
a significant burden on the user to reformulate the model.

We develop a method to automatically marginalize vari-
ables in a user-specified probabilistic program for inference
with HMC. Our work builds on prior research on automatic
marginalization (see Section 4) and shares technical un-
derpinnings with work to automatically Rao-Blackwellize
particle filters for evaluation-based PPLs (Murray et al.,
2018; Atkinson et al., 2022). A key difference is we focus
on graphical models and HMC, which leads to different tech-
nical considerations. Our method works by first compiling
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Figure 1. Graphical models of original and reformulated eight
schools models. We use a plate to represent shared substructure of
different branches. Gray variables are observed.

a probabilistic program into a graphical model. Although
most HMC-based PPLs compile directly to a log-density,
we use the program-tracing features of JAX (Bradbury et al.,
2018) to extract a graphical-model representation of pro-
grams written in NumPyro. In the graphical model, we
identify conjugacy relationships that allow some variables
to be marginalized, then manipulate the graphical model to
marginalize those variables. HMC is run on the reduced
model, and the marginalized variables are recovered by di-
rect sampling conditional on the variables sampled by HMC.
Importantly, the interface between the user and the PPL does
not change. Experiments show that our methods can substan-
tially improve the effectiveness of samples from hierarchical
partial pooling models and hierarchical linear regression
models and significantly outperforms reparameterization
in those models where both apply. Our implementation is
limited to scalar and elementwise array operations and may
require user input to avoid excessive JAX compilation times,
though these limitations are not fundamental.

2. Motivating examples

We first present example models where marginalization can
significantly benefit HMC-based inference.

The eight schools model (Gelman et al., 1995) is an impor-
tant demonstration model for PPLs (Gorinova, 2022) and
reparameterization (Papaspiliopoulos et al., 2007). Itis a
hierarchical model to study the effect of coaching on SAT
performance in eight schools. An example probabilistic
program for eight schools with NumPyro-like syntax is:

def eight_schools(sigma, y):
mu = sample(normal(®, 5))
tau = sample(half_cauchy(5))
with plate(8):
x = sample(normal(mu, tau))
observe(normal(x, sigma), y)

Mathematically, the model is

pw~ N(0,5%), T ~ HalfCauchy(5),
Tq ~ N(MaTQ)a Yi ~ N(miaazz)v

where i € {1,...,8} and (01.8,91:3) are given as data.
We want to reason about all latent variables, u, 7 and x1.g.
A PPL will compile the model code to a log joint density
log p(p, T, 1.8, y1.5) and then run HMC over the latent vari-
ables u, 7 and x1.5.. However, there is another model with
the same joint density:

o~ N(0,5%),

2, 2 yir* + po; 10}

yi ~ N(p, 75+ 07), x; ~J\/< Ty o2 ’724‘012) .

Both models are shown as graphical models in Figure 1:
they have different causal interpretations but identical joint
distributions and are therefore the same for performing infer-
ence. Importantly, in the reformulated model, we no longer
need to run HMC over all latent variables. Since only ¥;.g
are observed, it is possible to marginalize x1.g to obtain the
reduced model p(u, 7, y1:8) = p()p(7) [Ti=y (i | 1, 7).
We can sample i and 7 by running HMC on the reduced
model then sample x1.g directly from p(z1.s| i, 7, y1:8)
given i and 7. With this strategy, HMC samples 2 vari-
ables instead of 10, which significantly speeds up inference.

7 ~ HalfCauchy(5),

The principle that allows us to transform the model is con-
jugacy. In a Bayesian model p(z,y) = p(z)p(y|z) the
prior p(x) is conjugate to the likelihood p(y | «) if the pos-
terior p(x | y) is in the same parametric family as p(z) for
all y. For our working definition, we assume the parametric
families of the prior and likelihood have a tractable density
function and sampling procedure and that there is an ana-
Iytical formula for the parameters of the posterior in terms
of y. Given these assumptions, it is also possible to sample
from the marginal p(y) and compute its density efficiently.
Conjugacy is formally a property of distribution families,
but we will also say “z is conjugate to ”” when the meaning
is clear from context.

In the eight schools model, z; is conjugate to y; given y and
7, which leads to analytical expressions for the distributions
p(x; | u,7,y;) and p(y; | u, 7) in the reformulated model
and ensures they have tractable densities and samplers.

Hierarchical linear regression. The eight schools model
is very simple, but already requires user effort to reformu-
late. To emphasize the complexity of reformulating larger
models, in Figure 2 we present a simplified version of the
electric company model (Gelman & Hill, 2006). The full
model appears in Section 5.2. The observed variables are y;
and y5. One can guess that the model can be reformulated
because, conditioned on o, all variables are normal with
means that are affine functions of other variables. However,
the calculations are complex: the right side of Figure 2

'In practice, latent variables are transformed to have real sup-
port (Kucukelbir et al., 2017).

2To sample, draw = ~ p(x),y ~ p(y | =) and ignore x; for the
_ p@o)p(y|x0)

for a reference value xo.
p(zo | y)

density, use p(y)
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Figure 2. The original model and the reformulated model of the simplified electric company model. (¢1,¥1), (t2, y2) are given as data.

shows a portion of the reformulated model. In this version,
HMC is run to sample p, and o (distributions not shown)
conditioned on y; and y,. Then a, by, and by are recon-
structed conditioned on y,, 0, Y1, y2 by sampling from the
shown distributions. By reducing the number of variables
from 5 to 2, HMC inference can be accelerated. However,
it is extremely cumbersome for the user to derive the new
model, which no longer corresponds to the originally con-
ceived data generating process. We wish to automate this
procedure so users only write the original model and our
framework reformulates it.

3. Automatically marginalized MCMC

Given a program written by a user, our method will construct
a graphical model and then manipulate it into a reformulated
model for which MCMC samples fewer variables. The key
operation will be reversing certain edges (based on conju-
gacy) to create unobserved leaf nodes that can be marginal-
ized. For example, in the eight schools model of Figure 1,
the edge from z; to y; is reversed (which has the side effect
of creating edges from p and 7 to y;), after which z; is a
leaf. In this section, we first develop the algorithm assuming
a suitable graphical model representation. Then, in Section
3.7, we describe how we obtain such a representation in our
implementation using JAX and NumPyro.

3.1. Graphical model representation

Assume there are M random variables x1,zo,...,Zs
where z; belongs to domain X;. The full domain is
X =[], ;. For a set of indices A, we write x4 = (2;)ica
and X4 = [[;c,Ai. A graphical model G is defined
by specifying a distribution family for each node together
with a mapping from parents to parameters. Specifically,
for node ¢, let D; represent its distribution family from
a finite set of options (e.g., “Normal”, “Beta”, etc.), let
pa(i) € {1,..., M} be its parents, and let f;: Xy — ©;

be a mapping such that x; has distribution D;(6;) with pa-
rameters 0; = f(Xpa(;)). For example, if x5 ~ N (z1,1),
then Dy = “Normal”, pa(2) = {1}, and fo(x1) = (21, 1).
Furthermore, for each distribution family, assume a density
function and sampling routine are available. Let p;(z; | 6;)

be the density function for node ¢ and h;(u | 6;) be the sam-
pling function, which maps a random seed u to a sample
from D;(#;). The parent relationship is required to be
acyclic. Initially, nodes will be ordered topologically so
that pa(¢) C {1,...,4 — 1}. Our algorithms will manipu-
late the graphical model to maintain acyclicity but will not
preserve the invariant that nodes are numbered topologi-
cally. In our example models we use standard notation for
hierarchical models with variable names such as p, 7, z;, y;;
in these cases, the mapping to a generic sequence of ran-
dom variables x1, . .., xas, the parent relationship, and the
distribution families are clear from context.

With this representation, given concrete values of all
variables, the log density can be computed easily as
Zij\il log pi (2 | fi(Xpa(i))), assuming nodes are ordered
topologically. Generating a joint sample is similar: iterate
through nodes and sample z; ~ h;( - | fi(Xp(i))). A key
idea of our approach is that by factoring the log-density
computation into the sequence of conditional functions f;
for each random variable, we can manipulate the conditional
distributions to achieve automatic marginalization.

3.2. Computation graph representation

Our operations to transform the graphical model will re-
quire examining and manipulating the functions f;(Xpa(;))
mapping parents to distribution parameters. For example, in
the electric company model of Figure 2, we need to detect
from the symbolic expression yo ~ N'(a + baoto, 02) that
the mean parameter is an affine function of by, which is
required to reverse the edge b, — y-. Similarly, we must
manipulate symbolic expressions to obtain ones like those
in the reformulated model. For this purpose we assume
functions are represented as computation graphs.

Consider an arbitrary function f(z;,,2i,,...,z;, ) for
i1,...,0k € {1,..., m}. We assume the computation graph
of f is specified as a sequence of Ny primitive operations
that each write one value (Griewank & Walther, 2008),
which is similar to the JAX expression (Jaxpr) represen-
tation we can obtain from JAX. Specifically, the sequence of
values wy, wa, w3, . . ., Wkt N, are computed as follows: (1)
the first k values are the inputs to the function, i.e., w; = T,
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for j = 1to k, and (2) each subsequent value is computed
from the preceding ones as w; = ¢;(Wpred(5)), Where ¢; is
a primitive operation (e.g., “ADD”, “MUL”, “SQUARE”)
on values Wyeq(;) and pred(j) € {1,...,7 — 1} is the set
of predecessors of j. The predecessor relationship defines a
DAG for the variables in a computation graph.

We will also need to algorithmically manipulate compu-
tation graphs. In the text, we will denote manipulations
symbolically as follows. Suppose f(z4) and g(z ) are two
functions represented by computation graphs with poten-
tially overlapping sets of input variables. We use expres-
sions such as f * g or f + ¢ to mean the new computation
graph representing this symbolic expression. For example
the computation graph for f + g has input variables z 45
and consists of the graphs for f and g together with one
additional node (primitive operation) for the final addition.

3.3. Marginalizing unobserved leaf nodes

As a first useful transformation of the graphical model, we
consider how to improve HMC if there is an unobserved
leaf node. Without loss of generality, assume the leaf is
numbered M. Then we can factor the joint distribution as

p(x1:m) = p(Xv—1)p(@ar | X1:m-1)s (D

and run HMC on the marginalized model p(xi.p7—1),
then sample xzj; directly from p(zps|X1.07-1) by exe-
cuting hps(- | far(Xpacary)). Importantly, the marginal
p(x1.m-1) = Hﬁ;l Pi(4 | fi(Xpa(iy)) is simply the orig-
inal graphical model with the leaf node deleted, so it is
tractable. More generally, the argument is easily extended
by repeatedly stripping leaves to marginalize all variables
with no path to an observed variable for HMC, then to re-
construct those variables by forward sampling (sometimes
called ancestral sampling) from the graphical model (Koller
& Friedman, 2009).

3.4. Marginalizing non-leaf nodes by edge reversals

Generative models such as the eight schools and electric
company models do not have unobserved leaf nodes in their
original forms, since these nodes would play no useful role
in the data-generating process. Instead, our goal will be
to transform the model by a sequence of edge reversals
to create unobserved leaf nodes. Each edge reversal will
preserve the joint distribution of the graphical model, so it
is the same for performing inference. However, it will not
preserve the causal semantics of the data-generating process
(which is not required for inference), so it is reasonable for
the transformed model to have unobserved leaf nodes.

Reversing a single edge. The process of reversing a single
parent-child edge v — c is illustrated in Figure 3. There
must be no other path from v to ¢; otherwise reversing

® ®
O—O

Figure 3. Reversing edge v — c¢. Nodes p, € pa(v) and
pe € pa(c) \ {v} are representative parents to demonstrate the
transformation. Left: the graphical model before reversing v — c.
Right: the graphical model after reversing v — c.

the edge would create a cycle. In the example, there is
no other path because v has only one child. Let us de-
fine the “local distribution” of x,, and z. as the product of
the conditional distributions of those two variables given
their parents, which looks like p(z,, | -+ )p(zc | Ty, -+ ). If
these distributions satisfy the appropriate conjugacy rela-
tionship, we can derive replacement factors that look like
p(ze| - )p(ay | 2e, - - ) to “reverse” the v — ¢ edge while
preserving the local distribution. Formally, the operation is:

Definition 1 (Edge reversal). Assume G is a graphi-
cal model where node v is a parent of c and there
is no other path from v to c. Reversing edge v —
c replaces factors p(xy | Xpa(v))P(Te | Tu, Xpa(e)\fv}) bY
p(ze | xv)p(zy | e, X)) and updates the parent sets as
pa’(c) = U, pa’(v) = U U{c} for U = pa(v) Upa(e) \ {v}.

It is easy to show that edge reversal yields a graphical model
with the same joint distribution as the original. To under-
stand the utility of this operation, observe in Figure 3 that
node v becomes a leaf and can be marginalized after revers-
ing v — c¢. In principle, any edge can be reversed, but it is
only tractable when one can derive the replacement factors.
We can do so if the distributions are locally conjugate:

Definition 2 (Local conjugacy). Let G be a graphical
model where node v is a parent of c. We say the dis-
tribution of x, is locally conjugate fo the distribution of
Zc lfﬁ(xv) = p(xv |Xpa(v)) is conjugate to p(z. ‘ -Tv) =
P(Te | T, Xpa(e)\ v} ) Jor all values of Xy, () and Xpa(o)\ {v}-

For example, in the model z; ~ N(0,1), x2 ~ N (21, 1),
x3 ~ N(z122, 1), the random variable x; is conjugate to
T2, and also conjugate to 3 for fixed x2. So it is locally
conjugate to both z5 and x3. Section 3.6 will describe the
details of edge reversal using our graphical model represen-
tation and specific conjugate pairs of distribution families.

Creating a leaf by reversing all outgoing edges of a node.
We next consider how, if possible, to convert an arbitrary
node v to a leaf by reversing all of its outgoing edges. Sup-
pose v has H children c;,...,cy. For an arbitrary child
c it may not be safe to reverse v — c even if x, is locally
conjugate to x. because there may be another path from v to
¢, which would lead to a cycle. See Figure 4 for an example.
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Figure 4. Challenges of reversing multiple outgoing edges. Left:
the local structure. Middle: A loop is formed after reversing
v — c2, which is invalid. Right: The model is still valid after
reversing v — ¢1, and now v — ¢z can also be reversed.

However, if ¢ is minimal among ¢y, . . ., ¢y in a topological
ordering of G, then there can be no other v — ¢ path, so it
is safe to reverse v — c. Further, after reversing the edge, v
will move in the topological ordering to appear after ¢ but
before the other children, and the relative ordering of the
other children will remain unchanged. Then another child
will be minimal in the topological ordering. Therefore, if it
is possible to convert v to a leaf, we should reverse the edges
from v to each of its children following their topological
ordering. This reasoning is summarized in the following
theorem, which is proved in the appendix.

Theorem 1. Let G be a graphical model where node v has
children c1,...,cqg. If x, is locally conjugate to each of
Teyy -, Tey, then v can be turned into a leaf by reversing
the edges from v to each child sequentially in the order of a
topological ordering of the children.

Marginalizing many non-leaf nodes. Theorem 1 de-
scribes how to modify a graphical model, while preserv-
ing the joint distribution, to convert one non-leaf node to
a leaf so it can be marginalized. We now wish to use
this operation to marginalize as many nodes as possible.
The MARGINALIZE function in Algorithm 1 presents our
heuristic for doing so: it simply applies the operation of
Theorem 1 to attempt to marginalize every node v in re-
verse topological order. This is convenient because it au-
tomatically strips all nodes with no path to an observed
variable at the same time. If v can be marginalized, the
reversal operations are executed and v is removed from
G and pushed onto a stack S that determines the recov-
ery order. The RECOVER function augments a sample
of the non-marginalized variables with direct samples of
the marginalized variables. The next sections discuss the
implementations of CONJUGATE and REVERSE.

3.5. Conjugacy detection

Detecting when z,, is locally conjugate to x; uses the pat-
terns listed in Table 1, where (1) AFFINE(u, v) means that
u can be written as u = pv + ¢ for expressions p and ¢
that do not contain v, (2) DEPENDENT(u, v) means that
there exists a path from v to w in the computation graph, and
(3) LINEAR(u, v) means that « can be written as u = pv,

Algorithm 1 Marginalize and recover unobserved nodes
1: function MARGINALIZE (G)
2:  Initialize stack S and sort nodes so they are numbered

in topological order

3 for each unobserved node v in descending order do
4 if CONJUGATE(G, v, c) for all children c then
5 /I Marginalize v
6: for each child c in ascending order do
7
8
9

G = REVERSE(G, v, ¢)
Remove v from G
Add v to top of S
10:  return G, S

11: function RECOVER (S, z,, for nodes v not removed)
12:  while S is not empty do

13: v = pop(S)

14: Sample z,, given Tp,q(y)

15:  return xq.)s

for an expression p that does not contain v. For example,
the pattern in the first matches the case when x, and x;
both have normal distributions, in which case we can extract
expressions (computation graphs) for the parameters p; and
of as the two outputs of the expression fy,(Xpy(p)). The
pattern further implies that if AFFINE(uy, 2,,) is true and
DEPENDENT (02, z,,) is false, then z,, is locally conjugate
to xp. The functions AFFINE, LINEAR and DEPENDENT
require examining computation graphs; details and pseu-
docode can be found in appendix C.

3.6. Edge reversal details

If conjugacy is detected, Algorithm 1 will call the
REVERSE operation to reverse an edge. Algorithm 2 shows
the portion of the REVERSE algorithm for normal-normal
conjugacy. We emphasize that operations like 4+, — and *
are symbolic operations on computation graphs. The algo-
rithm implements well known Gaussian marginalization and
conditioning formulas. Line 5 extracts the symbolic expres-
sions for the parameters of the normal distributions. Line 6
extracts expressions p and ¢ such that u. = pzx, + ¢; conju-
gacy detection has already determined that such expressions
exist. Lines 7-13 compute symbolic expressions for parame-
ters of the marginal p(x.| - - - ) and conditional p(z, |z, - - )
and write them to f. and f,. Finally, Lines 15-16 update
the DAG to reflect the new dependencies.

3.7. Implementation

We have assembled the pieces for automatically marginal-
ized HMC. The full pipeline is to: (1) extract a graphical
model G from the user’s program, (2) call the MARGINAL-
IZE function to get a marginalized model G’ and recovery
stack S, (3) run HMC on G, (4) for each HMC sample x,
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Table 1. Patterns of conjugacy. If conditions of a row are satisfied, then the distribution of z, is locally conjugate to the distribution of x.

DISTRIBUTION OF z4 DISTRIBUTION OF xp

CONDITION 1 CONDITION 2

N(/‘l’ﬂdo—g) N(/Lb,()’f)

F(aa7 ﬂa) F(Ozb, ﬂb)

I'(oa, Ba) EXPONENTIAL ()
BETA(Q, Ba) BINOMIAL (74, pb)
BETA(a, Ba) BERNOULLI(Ap)

AFFINE (13, 7o)

LINEAR 8y, )

LINEAR (\y, z.) -
Db = Ta NOT DEPENDENT (ns, z4)
>\b = Tq -

NOT DEPENDENT (0, %4 )
NOT DEPENDENT vy, )

Algorithm 2 Reversing an edge (normal-normal case)
1: function REVERSE (G = (D;,pa(i), fi)M,,v,c)

2: /l'pa(v),pa(c), fv, fe, D. updated in place
3:  // all variables represent symbolic expressions
4: if D. is normal and D, is normal then
5: Let p1,, and o2 be the two output expressions f,,
and p. and o2 be the output expressions of f,.
6: p,q = AFFINE_COEFF (1., x,)
7. k=oip/(pPPo; +0?)
8: [ = Do + q
9: o2 = p?02 + o2
10: o, = fho + k(e — pie)
11: 02 = (1 — kp)o?
12: fe= (,LL/C,CT::Q),fU = (,LL;,U:,Q)
13:  else
14: . (see full algorithm in appendix)

15: pa(c) = (pa(c) \ {v}) Upa(v)
16:  pa(v) = pa(v) U {c} Upa(c)
17:  return G

call RECOVER(S, x) to sample the marginalized variables.

Our implementation uses JAX (Bradbury et al., 2018) and
NumPyro (Bingham et al., 2018; Phan et al., 2019) to ex-
tract a graphical model G. We use JAX tracing utilities to
convert the NumPyro program to a JAX expression (Jaxpr),
i.e., computation graph, for the entire sampling procedure.
The NumPyro program must use a thin wrapper around
NumPyro’s sample statement to register the model’s random
variables in the Jaxpr. We extract the distribution families
from the NumPyro trace stack and obtain the parameter func-
tions f; by parsing the Jaxpr to extract the partial computa-
tion mapping from parent random variables to distribution
parameters. As stated earlier, our approach is limited to pro-
grams that map to a graphical model, which means they sam-
ple from a fixed sequence of conditional distributions. This
closely matches those programs for which NumPyro can
currently perform inference, because the JIT-compilation
step of NumPyro inference requires construction of a static
computation graph. NumPyro’s experimental control flow
primitives (“scan” and “cond”) are not supported, and it
may be difficult to do so. Our current implementation is lim-
ited to Jaxprs with scalar operations and elementwise array

operations, though this restriction is not fundamental. We
expect our approach is compatible with other PPLs that use
computation graphs, with similar restrictions on programs.

4. Related work

Conjugacy and marginalization have long been important
topics in probabilistic programming. In BUGS (Lunn et al.,
2000) and JAGS (Hornik et al., 2003), conjugacy was used
to improve automatic Gibbs sampling. Hakaru (Narayanan
et al., 2016) and PSI (Gehr et al., 2016; 2020) use symbolic
integrators to perform marginalization for the purposes of
exact inference. We make use of information provided by
graphical models to identify certain patterns, which is more
efficient in large scale models. Autoconj (Hoffman et al.,
2018) proposes a term-graph rewriting system that can be
used for marginalizing a log joint density with conjugacy.
Our approach is distinct in that we operate on the graph-
ical model and computation graph for the generative pro-
cess, as opposed to the log-density. Gorinova et al. (2021)
propose an information flow type system that could be ap-
plied to automatic marginalization of discrete random vari-
ables. Following the exploration of more expressive PPLs,
streaming models have attracted much attention. Murray
et al. (2018) proposed delayed sampling, which uses au-
tomatic marginalization to improve inference via the Rao-
Blackwellized particle filter (RBPF) (Doucet et al., 2000).
Delayed sampling has been developed in Birch (Murray &
Schon, 2018), Pyro (Bingham et al., 2018) with funsors
(Obermeyer et al., 2019a;b), Anglican (Lundén, 2017) and
ProbZelus (Baudart et al., 2020). Atkinson et al. (2022)
propose semi-symbolic inference, which further expands
the applicability of delayed sampling to models with arbi-
trary structure. Our work is distinct in that we statically
analyze a model prior to performing inference for the pur-
pose of improving MCMC: this makes our approach “fully
symbolic” (no concrete values are available) and leads to
different algorithmic considerations, though our Algorithm
1 shares technical underpinnings with the hoisting algorithm
in Atkinson et al. (2022); see Appendix E for more details.

There are many works that improve HMC inference in PPLs
from different perspectives. Stan (Carpenter et al., 2017)
has had tremendous impact using HMC inference for PPLs.
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Because Stan programs specify a log-density and not a sam-
pling procedure, our idea does not directly apply to Stan
programs. However, many Stan programs are generative in
spirit, and Baudart et al. (2021) characterize a subset of Stan
programs on which the methods of this paper can be applied
directly. Papaspiliopoulos et al. (2007) propose a general
framework for non-centered (re)parameterization in MCMC.
Gorinova et al. (2020) automate the procedure of choos-
ing parameterizations of models using variational inference.
In Parno & Marzouk (2018) and Hoffman et al. (2019),
the parameterizations of all latent variables are learned as
normalizing flows (Papamakarios et al., 2021; Rezende &
Mohamed, 2015). In models where some variables are
marginalizable, our method works better than reparameter-
ization: see Section 5.2 for an example. Mak et al. (2022)
use the framework of involutive MCMC (Neklyudov et al.,
2020; Cusumano-Towner et al., 2020) to extend the applica-
bility of MCMC to non-parametric models in PPLs.

5. Experiments

We evaluate the performance of our method on two classes
of hierarchical models where conjugacy plays an important
role. We use NumPyro’s no-U-turn sampler (NUTS) (Hoff-
man & Gelman, 2014) in all experiments, denoted HMC
hereafter. Our approach is “HMC with marginalization”
(HMC-M). For all experiments, we use 10,000 warm up
samples to tune the sampler, 100,000 samples for evalua-
tion, and evaluate performance via effective sample size
(ESS) and time (inclusive of JAX compilation time).

5.1. Hierarchical partial pooling models

A hierarchical partial pooling (HPP) model (Gel-
man et al, 1995) has the form p(0,z1.,Y1.n) =
p(0) [T, p(zi | 0)p(yi | 0, 2z, x;), where (x;,y;) are ob-
served covariate and response values for the ith data point,
z; is a local latent variable, and 6 is a global latent variable to
model shared dependence. In some HPPs, the distribution of
z; is chosen to be a conjugate to y;. The eight schools model
is one such example. Figure 5 shows samples of 6§ = [, 7]
for the eight schools model obtained by both HMC and
HMC-M. Without marginalization, HMC struggles to sam-
ple small values of 7 and the chain gets stuck due to the
“funnel” relationship between 7 and x; (Papaspiliopoulos
et al., 2007). With marginalization, both z; and the funnel
are eliminated (from HMC), and the quality of the final
samples significantly improves.

Another application of HPPs is repeated binary trials, where
we observe the number of successes y; out of K trials for
each unit ¢, and assume a partially shared structure for the
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Figure 5. Histogram and contour of samples from y and log 7 from
the eight schools model with different algorithms. In both cases,
100k samples were taken. Left: using HMC, with very low ESS,
the chain fails to mix getting stuck in a particular region with
almost no exploration of low values of 7. Right: using HMC-M,
the posterior is evenly explored.

success probabilities, such as (Carpenter et al., 2017):

m ~ Uniform(0, 1), x ~ Pareto(1,1.5),
0; ~ Beta(mk, (1 — m)k), y; ~ Binomial(K;,0;).

Applications include the rat tumors dataset (Tarone, 1982),
the baseball hits 1970 dataset (Efron & Morris, 1975) and
the baseball hit 1996 AL dataset (Carpenter et al., 2017).
This model is again difficult for HMC due to a funnel re-
lationship between « and 6; (Carpenter et al., 2017). Sug-
gested remedies are to model x with an exponential distri-
bution (Patil et al., 2010) or rewrite the model to one where
reparameterization is applicable (Carpenter et al., 2017).

We observe that, since 6; (Beta) is locally conjugate to
y; (Bernoulli), marginalization is a better strategy. In the
marginalized model, y; is a beta-binomial random variable,
HMC samples only m and x, and each 6; is sampled after-
ward from p(6; | m, , y;), a beta distribution. The funnel
problem is eliminated and the HMC dimension is reduced
from n + 2 to 2. Our methods achieve this automatically.

Table 2 shows the results. Sampling x is known to be diffi-
cult in this model, but HMC-M achieves an ESS with similar
magnitude to the number of samples. The HMC problem
dimension is also reduced, which leads to faster running
time. These factors combined lead to more than 100x ESS/s
improvement on the baseball hit 1996 AL data set.

5.2. Hierarchical linear regression

Similar to partial pooling, hierarchy can be introduced in lin-
ear regression models. We demonstrate with two examples
how our methods can improve inference in such models.

Electric company: The electric company model (Gelman &
Hill, 2006) studies the effect of an educational TV program
on children’s reading abilities. There are C' = 192 classes in
G = 4 grades divided into P = 96 treatment-control pairs.
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Table 2. Min ESS across all dimensions, time (s) and min ESS/s for HMC and HMC-M on the repeated binary trials model. Mean and std

over 5 independent runs are reported.

DATASET ALGORITHM MIN ESS TIME (S) MIN ESS/s
. HMC 1384.1 (1156.7) 94.5 (5.7) 14.8 (12.7)
BASEBALL HITS 1970 (n = 18) HMC-M  39001.8 (20030.4)  110.5(89.2)  592.3 (304.2)
- HMC 24632.3 (1494.5) 654.8 (43.9) 37.7 (2.1)
RAT TUMORS (n = T71) HMC-M  77644.5 (9570.8) 72.4(0.3) 1072.7 (134.0)
- HMC 9592.3 (260.1) 2746.1 (107.6) 3.5(0.2)
BASEBALL HITS 1996 AL (n =308) v M 611090 (3344.9)  130.9(1.4)  467.0 (29.5)
Class k is represented by (g, p, tk, yr) Where gy is the —— HMC-M HMC-R HMC
grade, py, is the index of pair, ¢, € {0, 1} is the treatment ,
variable and yy, is the average score. The classes in pair j »l10
belong to grade gp[j]. The full model is ﬁ 10! ;;[
fi ~ N(0,1), a; ~ N(100pg51, 1), 100
7 o &l 0 20 40 60 80 100
b; ~ N(Oa 100%), logo; ~ N<07 1)7 component

yr ~ N(ap, + tkbgk,agk).

wherei € {1,...,G},j€{1,...,Ptandk € {1,...,C}.
Observe that 1;, a;, b; and yy, are all normally distributed
with affine dependencies. Therefore, it is possible to
marginalize y;, a; and b; from the HMC process. As Sec-
tion 2 points out, it is very difficult to manually do so, but
our methods do so automatically.

We observed that marginalization of y; led to very high JAX
compilation times even though the computation graph for
the log-density was not much larger than the one before
marginalization (14606 primitive operations vs. 9186). We
attribute this to a current JAX limitation. See Appendix F
for experimental evidence. As a workaround, we manually
prevented p; from being marginalized.

Figure 6 shows the results. In this model, HMC on the
original model performs poorly, but reparameterizing the a;
variables is very helpful: this alternative is shown as HMC-
R, and achieves excellent ESS (comparable to the number of
samples). However, HMC-R does not reduce the dimension
and solves a 3G + P = 108 dimension problem, while
automatic marginalization reduces the problem dimension
to 8 and results in an additional 4x speed up.

Pulmonary fibrosis: The Pulmonary fibrosis dataset
(Shahin et al., 2020) has patient observation records over
time of forced vital capacity (FVC), a disease indicator. The
FVC of each patient is assumed to be linear with respect to
time and regression slopes and intercepts are generated by a
hierarchical model; see Appendix G. We again prevent two
top-level variables from being marginalized and remove %
of the data points due to slow JAX compilation. Under these
settings, HMC-M again outperforms HMC and HMC-R by

producing more effective samples in less time (Table 3).

Figure 6. Component-wise ESS/s on the electric company model.
Our method (HMC-M) is compared against HMC and HMC with
reparameterization (HMC-R). Components ordered by ESS/s.

Table 3. Min ESS across all dimensions, time (min) and min ESS/s
for HMC, HMC-R and HMC-M on the pulmonary fibrosis model.
Mean and std over 5 independent runs are reported.

ALGORITHM MIiN ESS TIME (MIN)  MIN ESS/s
HMC 19817 (1207) 51.8 (0.1) 0.1(0.0)
HMC-R 11362 (1567) 51.5(1.3) 0.1 (0.0)
HMC-M 96135 (557) 14.9 (1.3) 1.8 (0.1)

6. Discussion

We proposed a framework to automatically marginalize vari-
ables in a graphical model obtained from a PPL for the
purpose of accelerating MCMC. Our results show signifi-
cant performance improvements in models with conjugacy.
The process can be fully automated to free users from cum-
bersome derivations and implementations. The method is
limited to graphical models, which excludes some PPL fea-
tures but covers a huge range of applied statistical models.
Our current implementation is limited to scalar and elemen-
twise array operations. An important direction for future
work is to support a wider range of array operations, in-
cluding matrix operations, indexing, slicing, and broadcast-
ing. Another interesting direction is to introduce automatic
marginalization to MCMC applicable to higher order PPLs.
We believe this work is an important step towards an auto-
matic MCMC system that performs well on a wide range of
models with minimal input from users.
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A. Proof of the correctness of Definition 1

Definition 1 in the main text is

Definition 1 (Edge reversal). Assume G is a graphical model where node v is a parent of c and there is no other path from v
to c. Reversing the v — c edge replaces factors p(T. | Xpa(v))P(Te | Tv, Xpa(e)\{v}) DY P(2c | XU )p(T0 | 7c, XU ) and updates
the parent sets as pa’(c) = U, pa’(v) = U U {c}, where U = pa(v) U pa(c) \ {v}.

It was claimed that the operation yields a graphical model with the same joint distribution as the original. Now we prove it.

Proof. 1t is enough to show that (1) the graphical model after reversal is still valid; (2) the joint distribution does not change,
which requires

p(l’v | xpa(v))p(xc | Ly, Xpa(c)\{’u}) = p(l‘c ‘ XU)p(LL'v | Le, XU)'

For (1), we need to show that no cycles could be formed during the process. For any p, € pa(v), an edge p, — ¢ is added.
Because there does not exist a path from c to p,, (otherwise there will be a loop in the original model), this edge will not
cause a loop. For any p. € pa(c) \ {v}, an edge p. — v is introduced. This edge will also not cause a loop; otherwise
another path from v to ¢ will be found. Finally, the edge v — c is replaced with ¢ — v, this edge will also not introduce a
loop because there are no other paths from v to c.

Now we show (2). Since there is no other paths from v to ¢, there is no path from v to any nodes in Xp,()\ {»}- Conditioned
ON Xp,(y), by conditional independence, we have that p(x, | Xpa(v)) = (2, | Xy ). Also, all paths from nodes in pa(v)
to c are blocked either by v, or by a parent of ¢, so conditioned on X,(c)\ {v}» by independence, p(z. |z, Xpa(c)\{v}) =
p(z¢ | v, Xu ). By the properties of conjugacy, we have that

p(xv | Xpa(’u))p(xc | Ty, Xpa(c)\{v}) = p(xv | XU)P(% | Ty, XU)
= p(@e | xv)p(Ty | Te, XU7)-

O

B. Proof of the Theorem 1
We first restate Theorem 1.
Theorem 1. Let G be a graphical model where node v has children cy, ..., cy. If x, is locally conjugate to each of
Teys - -3 Tey, then node v can be turned into a leaf by sorting ci, . .., cyg by any topological ordering and reversing the
edges from v to each child following this ordering.
Proof. Without loss of generality, assume cy, . .., cy are sorted according to topological ordering. We prove by induction.
Assume for k € {0, ..., H}, we have reversed the edges v — ¢1,...,v — ¢, and have the following properties:

(1) The children of v are ci41,...,cH-

(2) ck+1,--.,cy are ordered topologically;

(3) z, is a local conjugate prior for each of ¢, ,,,...,T¢y-

We show that the edge v — ¢y is reversible and the properties still hold for k + 1 after the reversal. By (1) and (2), cx+1 is
minimal among the children of v in topological order, so there does not exist a path from v to ¢, other than v — cg4;. By
(3), , is a local conjugate prior to x, . Then we can apply edge reversal to v — cg1. Now we check all the conditions
after the replacement. For property (1), the children of v now become ¢y, ..., cy. For property (2), the nodes with
edges that changed (either incoming or outgoing) were v, c1, and their parents; these nodes all preceded cg4-2, . . ., cy in
topological order prior to the reversal and continue to do so afterward, so the relative ordering of ¢y, ..., cy does not
change. For (3), the distribution family of z,, does not change, and the conditional distribution of each of @, , ,, ... Tcy
does not change. So all conditions of local conjugacy in Table 1 will not change for them, which means the distribution of
T, 1s still a local conjugate prior for the distributions of each of z, ,,, ... Ty

In summary, the three conditions holds for £k = H by induction, which means v can be converted to a leaf following the said
procedure. O
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Algorithm 3 Determining dependency of a variable on an input. X;.,/ is the set of all random variables.
1: function DEPENDENT (w;, x)
2:  ifw; =z then
return True
ifwj € x1.p then
return False
for p € pred(j) do
if DEPENDENT (w),, z) then
return True
return False

R A A

C. Details of conjugacy detection

Conjugacy detection requires looking into the computation graph of functions. In this section, we introduce how conjugacy
detection is performed on a computation graph. During the tracing of a program, the procedure of computation is compiled
into intermediate representations consisting of basic operations. For example, the function

def f(x, y):
p=(x-y) *x2
g = (x+y) *x 2
return p + q

could be represented as

INPUTS: a, b
=SUB ab
SQUARE ¢
ADD a b
SQUARE e
= ADD d f
UTPUTS: g

C
d
e
.F
g
0

By looking at the intermediate representations, it is possible to reason about the relationship between outputs and inputs. For
a function f(z;,, zi,, ..., x;,), we defined its computation graph to be a sequence of Ny primitive operations in Section
3.2. The sequence w1, wa, - . ., W+ N, is computed, where: (1) the first k are the inputs to the function, i.e., w; = x;; for j
=1 to k, and (2) each subsequent value is computed from the preceding values as

wj = G (Wpred(j)), 2)

where ¢; is a primitive operation on the set of values Wyeq(;), where pred(j) C {1,...,7 — 1} is the set of predecessors of
7. In Section 3.5, we have reduced conjugacy detection to affinity, linearity and dependency detections. We first introduce
the details of dependency detection with the above definition.

Given a function with a computation graph, we may want to determine whether a variable w; depends on an input z,. We
define the result to be DEPENDENT (wj, z,,), which could be obtained recursively through the equations shown in Algorithm
3. Note that in this paper, the inputs of functions are always random variables in x1.5s. For DEPENDENT (w,, z,), if w;
is a random variable in X;.,s, then it must be an input of the function. Then DEPENDENT would return whether wy; is .
If wj is the result of a basic operator, it would enumerate the inputs of that operator. If any of those inputs are dependent
on x,, then the result is true. The recursive algorithm could be of exponential complexity in some special cases. We store
intermediate results in a dictionary and refer to it before recursion to avoid redundant computation. Then the complexity is
linear with respect to the number of variables involved.

Affinity and linearity can be included in the same framework. In addition to determining whether w; is affine to z,, we
further return whether the slope and intercept are non-zero. If affinity is detected with zero intercept, the relationship
is then linear. We define AFFINE_ALL(wj,:Jca) to be a tuple of three bool variables - whether w; is affine on x,,
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Algorithm 4 Determining affinity and linearity of a variable on an input. x;.5s is the set of all random variables.
1: function AFFINE_ALL (w;, )

if w; = x then

3 return True, True, False

4 ifwj € x1.)p then

5: return True, False, True

6: if ¢; € {ADD,SUB} and pred(j) = {p1,p2} then

7.

8

9

1, S2,t1 = AFFINE_ALL(w,, , z)

T9, S2,ta = AFFINE_ALL(w,,, z)

: return 7y and 75, s1 Or Ss, t1 Or to
10:  if ¢; = MUL and pred(j) = {p1,p2} then

11: r1, S2,t1 = AFFINE_ALL(w,, , )

12: g, S2,te = AFFINE_ALL(w,,, )

13: if not s, then

14: return r; and o, t; and so, 1 and to
15: if not s, then

16: return r; and 5, s; and to, t1 and 5
17: return False, False, False

18:  if ¢; = DIV and pred(j) = {p1, p2} then
19: 1, S2,t1 = AFFINE_ALL(w,, , z)

20: T2, S2,ts = AFFINE_ALL(w,,, z)

21: if not s, then

22: return 7, and 5, sq, t1

23: return False, False, False

24:  for p € pred(j) do

25: r,s,t = AFFINE_ALL(w,, )

26: if not r or s then

27: return False, False, False

28:  return True, False, True

29:

30: function AFFINE (wj, =)

3l:  r,s,t =AFFINE_ALL(w;,x)
32:  returnr

33:

34: function LINEAR (w;, x)

35:  r,s,t = AFFINE_ALL(w;, x)
36:  return r and not ¢

whether the slope is non-zero and whether the intercept is non-zero. Then LINEAR and AFFINE could be obtained from
AFFINE_ALL (w;, z,). Our algorithm of affinity detection is adapted from Atkinson et al. (2022) with slight modification
to setting that has no concrete values. The pseudocodes are in Algorithm 4. The result of AFFINE_ALL(w,, z,) could
be obtained by enumeration of cases of ¢; and induction in the structure of the computation graph. For example, if we
know w; = ADD(wp, , wp,), and 1, s1,t1 = AFFINE_ALL(wp, , 2,) and 72, s2,ts = AFFINE_ALL(wp,, ), then w;
is affine to z, if both of wy,, and wy,, are affine to 21, which means (71 and r2). The slope is non-zero if any of the slope of
p1 or po is non-zero, so the second return value is (s1 or s2). The same applies to whether the intercept is non-zero, which
is (t1 or t).

D. Details of reversing an edge

We have constructed the parts of conjugacy detection. In this section we discuss the details of reversing an edge in the
marginalized MCMC. In Algorithm 2 a function AFFINE_COEFF is defined to get the coefficients when affinity is detected.
The pseudocode of it is in Algorithm 5, which is similar to AFFINE. We emphasize that the computations in Algorithm 5
are fully symbolic. Each variable corresponds to a sequence of operations which could be regarded as a computation graph.
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Algorithm 5 Getting the coefficients of affine relationship between a variable w; on an input x. x1. s is the set of all random
variables.
1: function AFFINE_COEFF(wj, x)
if w; = x then
3 return 1, 0
4 if w; € x1.)s then
5: return 0, 1
6: if ¢; = ADD and pred(j) = {p1,p2} then
7.
8
9

s1,t1 = AFFINE_COEFF(wy, , x)
S2,ta = AFFINE_COEFF(w,,, x)
: return s; + So, t1 + to
10:  if ¢; = SUB and pred(j) = {p1,p2} then

11: s1,t1 = AFFINE_COEFF(wy, , x)

12: S2,t2 = AFFINE_COEFF(wp,, x)

13: return s; — So, t1 — to

14:  if $; = MUL and pred(j) = {p1,p2} then
15: s1,t1 = AFFINE_COEFF(w,, , z)

16: S2,ts = AFFINE_COEFF(w,, x)

17: if s1 is zero then

18: return tq x so, t1 x to

19: if s is zero then

20: return sy x to, t1 * to

21: raise Error

22:  if ¢; = DIV and pred(j) = {p1, p=} then
23: s1,t1 = AFFINE_COEFF(wy, , x)

24: S2,ta = AFFINE_COEFF(w,,, x)

25: if s is zero then

26: return Sl/tg, tl/tQ

27: raise Error

28:  return 0, w;

So each +, —, * and / is applied as merging two (potentially overlapping) computation graphs. One issue is we need to
define whether some variables are zero (lines 17,19,25). So operations of zeros should be specially dealt with. For example,
if we find a 0 + 0, instead of declaring an operation that adds two zeros, we should instead use the result 0.

Now we are only left with the full version of Algorithm 2, which could be found in Algorithm 6.

E. Relations to the hoisting algorithm

The hoisting algorithm in Atkinson et al. (2022) is an online algorithm that can be used for automatically running Rao-
Blackwellized particle filters (RBPF) (Doucet et al., 2000). Our Algorithm 1 is highly related to the hoisting algorithm.
Both algorithms can perform conjugacy detection and marginalize all possible random variables. One apparent difference is
that Algorithm 1 is written as loops while the hoisting algorithm uses recursions. However, the main difference between the
two algorithms comes from the application. In RBPF, all non-marginalizable random variables are sampled from the model,
allowing the representations to be semi-symbolic, where non-marginalizable random variables are replaced with sampled
values during the execution of the hoisting algorithm. In HMC, no random variables are directly sampled, and the same
computation graph will be executed many times, so marginalization should be performed before running with fully symbolic
representations. In the mean time, Theorem 1 allows us to separate the conjugacy detections and the reversals in two different
loops, which reduces the running time in large scale models. This improvement is not possible with the hoisting algorithm as
an online algorithm, so some unnecessary reversals are performed. Furthermore, from the perspective of implementation, the
parent node is fixed inside the loop of v in Algorithm 1. So in one iteration, all the calls to CONJUGATE and REVERSE
are with respect to the same v. It is therefore possible to save the intermediate results of these functions to avoid redundant
computation on the computation graph. So the time complexity of Algorithm 1 is O(M|C|), where |C| is the size of the
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Figure 7. Lines of Jaxprs of the gradient of the log density function and JIT compilation time with respect to N for the simple hierarchical
model. With similar lines of Jaxprs, the compilation time can be hundreds of times slower on the marginalized model than on the original
model.

computation graph. With the above considerations, we think that Algorithm 1 is an important contribution in the area.

F. Slow compilation of JAX

In the experiments, we discover that the compilation time of JAX can be slow for some models. We identify the problem
specifically at the structure of marginalized hierarchical models. To demonstrate, we consider the simple model

€ NN(071)7 IOgO' NN(Ovl)a Yi NN(‘T71)7

where ¢ = 1,..., N and y; = 0 for all 7 are provided as pseudo observations. It is possible to marginalize x by reversing
edges to each of y;. However, we found that the JIT compilation time scales super-linear with respect to N for the
marginalized model. See Figure 7. Regardless of the performance, the JIT compilation time for the gradient function of the
marginalized model can be hundreds larger than that of the original model when NV is large enough, with similar lines of
Jaxprs. This is probably because marginalization creates a chain shaped computation graph for all the observations, and it is
difficult for JAX to work in this case. We do not regard it as a core limitation of our idea.

G. Pulmonary fibrosis model

Records form the pulmonary fibrosis dataset (Shahin et al., 2020) have the form (ID;, ¢;, y;), where ID; is the patient id, ¢;
is the observation time, and y; is forced vital capacity (FVC), a measure of disease progression. The FVC of each patient is
assumed to be linear with respect to time and regression slopes and intercepts are generated by the following hierarchical
model:

tha ~ N(0,500%), o, ~ HalfCauchy(100),
ws ~ N(0,3%), o5 ~ HalfCauchy(3),
Qj ~ N(/"Laao—g)v 5] NN(M[%O’%),
o ~ HalfCauchy(100), y; ~ N(OZID,- + ti,B]Di,O'2),

where i € {1,...,549} and j € {1,...,173}. We prevented the variables i, and pg from being marginalized to avoid
slow JAX compilation.
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Algorithm 6 The full version of Algorithm 2: reversing an edge

1: function REVERSE (G = (D;,pa(i), fi)M,,v.c)
2: [/l pa(v),pa(c), fu, fe, D updated in place

3 // all variables represent symbolic expressions
4 if D, is normal and D, is normal then
5: Let y,, and o2 be the two output expresssions f,, and y. and o be the output expressions of f..
6: p,q = AFFINE_COEFF (s, .,
7. k=o5p/(pPPo; +07)
8 te = Py +q
9: o2 = p?02 + o2
10: M; = o + k(zc — ,ulc)
11: 02 = (1 — kp)o?
12: fe= (,U'/c’af)va = (ﬂ;’alvz)
13:  if D, is Betaand D, € {Bernoulli, Binomial} then
14: Let o, and 3, be the two output expressions of f,
15: if D. = Bernoulli then
16: ne=1
17: Pe = A¢
18: else
19: Let n. and p. be the two output expressions of f.
20: ol = oy + ¢
21 6:; = By +ne — T
22: D, = BetaBinomial

23: fc = (nc,av;ﬁv)s fv = (a{u,ﬁ;)

24:  if D, is Gamma and D, € {Exponential, Gamma} then

25: Let o, and 3, be the two output expressions of f,
26: if D. = Exponential then

27: a.=1

28: Be = Ae

29: else

30: Let o and 3. be the two output expressions of f,
31 p, ¢ = AFFINE_COEFF(8,, z.,)

32: al, = oy + ae

33: ! = By +px .

34: D, = CompoundGamma

35: fc: (a67a’u7ﬁv/p)’ fv = (042;75:;)
36:  pa(c) = (pa(c) \ {v}) Upa(v)

37:  pa(v) = pa(v) U {c} Upa(c)

38: return G




